جلد 10 - شماره سال ۱۳۹۹                   ‫جلد (10): 193 | برگشت به فهرست نسخه ها

XML English Abstract Print


1- پژوهشکدهٔ علوم شناختی و مغز، دانشگاه شهید بهشتی
2- گروه روان‌شناسی، دانشکدهٔ روان‌شناسی و علوم تربیتی دانشگاه شهید بهشتی
چکیده:   (1395 مشاهده)
زمینه و هدف: اختلال نارسایی توجه/فزون‌کنشی با نقایصی در کارکردهای شناختی ازجمله توانایی فضایی همراه است؛ بنابراین هدف این مطالعه بررسی تفاوت‌های موجود در عوامل فضایی در کودکان با و بدون اختلال نارسایی توجه/فزون‌کنشی بود.
روش‌بررسی: در این پژوهش توصیفی‌تحلیلی ۶۴ کودک با اختلال نارسایی توجه/فزون‌کنشی با تشخیص روان‌پزشک کودک و براساس ملاک‌های DSM-5 در شهر تهران در سال ۱۳۹۸ شرکت کردند. آن‌ها با شیوهٔ نمونه‌گیری از نوع هدفمند و به‌صورت دردسترس انتخاب شدند؛ همچنین ۶۴ کودک بدون اختلال به‌عنوان گروه گواه در نظر گرفته شدند. عوامل فضایی ازطریق تکالیف توانایی فضایی تهیه‌شده توسط سلوکی و همکاران (۲۰۲۰) ارزیابی شد. هر تکلیف، متغیر‌های مختلفی را نظیر دقت پاسخ و زمان واکنش در بر گرفت که برای مقایسهٔ آن‌ها در کودکان دو گروه از آزمون یومن‌ویتنی استفاده شد. داده‌ها با استفاده از نرم‌افزار SPSS نسخهٔ ۲۴ در سطح معنا‌داری ۰٫۰۵ تجزیه‌وتحلیل شدند.
یافته‌ها: کودکان با اختلال نارسایی توجه/فزون‌کنشی درمقایسه با کودکان بدون اختلال نمرهٔ دقت کمتری در تکالیف انعطاف‌پذیری بستن (۰٫۰۰۱>p)، سرعت بستن (۰٫۰۰۱>p)، سرعت ادراک (۰٫۰۰۱>p)، تجسم‌سازی (۰٫۰۰۱>p)، روابط فضایی (۰٫۰۰۱>p)، جهت‌یابی فضایی (۰٫۰۰۱>p) و در فاز حافظۀ نشانه‌های تکلیف مسیریابی (۰٫۰۰۲=p) داشتند. دو گروه به‌لحاظ میانگین زمان واکنش در تکالیف تجسم‌سازی (۰٫۰۰۱>p)، روابط فضایی (۰٫۰۰۱>p) و جهت‌یابی فضایی (۰٫۰۰۵=p) تفاوت معناداری با یکدیگر داشتند.
نتیجه‌گیری: باتوجه به یافته‌های این پژوهش مبنی‌بر وجود نقایصی در عوامل مختلف توانایی فضایی در کودکان با اختلال نارسایی توجه/فزون‌کنشی، به‌نظر می‌رسد متخصصان توان‌بخشی شناختی باید عوامل هشت‌گانهٔ توانایی فضایی را در ارزیابی این کودکان مدنظر قرار دهند.
متن کامل [PDF 719 kb]   (328 دریافت)    
نوع مطالعه: مقاله پژوهشی اصیل | موضوع مقاله: روانشناسی

فهرست منابع
1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Washington, D.C: American Psychiatric Association; 2013, pp:133–7.
2. Pievsky MA, McGrath RE. The neurocognitive profile of attention-deficit/hyperactivity disorder: a review of meta-analyses. Arch Clin Neuropsychol. 2018;33(2):143–57. [DOI]
3. Castellanos FX, Tannock R. Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci. 2002;3(8):617–28. [DOI]
4. Filipek PA, Semrud-Clikeman M, Steingard RJ, Renshaw PF, Kennedy DN, Biederman J. Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology. 1997;48(3):589–601. [Article]
5. Vance A, Silk TJ, Casey M, Rinehart NJ, Bradshaw JL, Bellgrove MA, et al. Right parietal dysfunction in children with attention deficit hyperactivity disorder, combined type: a functional MRI study. Mol Psychiatry. 2007;12(9):826–32, 793. [DOI]
6. Silk TJ, Vance A, Rinehart N, Bradshaw JL, Cunnington R. Dysfunction in the fronto-parietal network in Attention Deficit Hyperactivity Disorder (ADHD): An fMRI study. Brain Imaging and Behavior. 2008;2(2):123–31. [DOI]
7. Fan L-Y, Gau SS-F, Chou T-L. Neural correlates of inhibitory control and visual processing in youths with attention deficit hyperactivity disorder: a counting Stroop functional MRI study. Psychol Med. 2014;44(12):2661–71. [Article]
8. Heil M, Jansen-Osmann P. Children’s left parietal brain activation during mental rotation is reliable as well as specific. Cognitive Development. 2007;22(2):280–8. [DOI]
9. Sack AT. Parietal cortex and spatial cognition. Behav Brain Res. 2009;202(2):153–61. [DOI]
10. Zimmermann M, Kubik V, Persson J, Mäntylä T. Monitoring multiple deadlines relies on spatial processing in posterior parietal cortex. Journal of Cognitive Neuroscience. 2019;31(10):1468–83. [DOI]
11. Linn MC, Petersen AC. Emergence and characterization of sex differences in spatial ability: a meta-analysis. Child Dev. 1985;56(6):1479–98.
12. Hegarty M, Waller DA. Individual differences in spatial abilities. In: Shah P, Miyake A, editors. The Cambridge handbook of visuospatial thinking. 1st ed. Cambridge University Press; 2005. pp: 121–69. [DOI]
13. Carroll JB. Human cognitive abilities: a survey of factor-analytic studies. 1st ed. Cambridge University Press; 1993, pp:128–87. [DOI]
14. Yilmaz HB. On the development and measurement of spatial ability. International Electronic Journal of Elementary Education. 2009;1(2):83–96.
15. Uttal DH, Meadow NG, Tipton E, Hand LL, Alden AR, Warren C, et al. The malleability of spatial skills: a meta-analysis of training studies. Psychol Bull. 2013;139(2):352–402. [DOI]
16. Alpanda S. The investigation of the relationship between ADHD and visual-spatial functions. Procedia - Social and Behavioral Sciences. 2015;174:2219–25. [DOI]
17. Aman CJ, Roberts RJ, Pennington BF. A neuropsychological examination of the underlying deficit in attention deficit hyperactivity disorder: frontal lobe versus right parietal lobe theories. Dev Psychol. 1998;34(5):956–69. [DOI]
18. Leitner Y, Doniger GM, Barak R, Simon ES, Hausdorff JM. A novel multidomain computerized cognitive assessment for attention-deficit hyperactivity disorder: evidence for widespread and circumscribed cognitive deficits. J Child Neurol. 2007;22(3):264–76. [DOI]
19. García-Sánchez C, Estévez-González A, Suárez-Romero E, Junqué C. Right hemisphere dysfunction in subjects with attention-deficit disorder with and without hyperactivity. J Child Neurol. 1997;12(2):107–15. [DOI]
20. Chelune GJ, Ferguson W, Koon R, Dickey TO. Frontal lobe disinhibition in attention deficit disorder. Child Psychiatry Hum Dev. 1986;16(4):221–34. [DOI]
21. Jakobson A, Kikas E. Cognitive functioning in children with and without Attention-deficit/Hyperactivity Disorder with and without comorbid learning disabilities. J Learn Disabil. 2007;40(3):194–202. [DOI]
22. Kalff AC, Hendriksen JGM, Kroes M, Vles JSH, Steyaert J, Feron FJM, et al. Neurocognitive performance of 5- and 6-year-old children who met criteria for attention deficit/hyperactivity disorder at 18 months follow-up: results from a prospective population study. J Abnorm Child Psychol. 2002;30(6):589–98. [DOI]
23. Kibby MY, Cohen MJ, Hynd GW. Clock face drawing in children with attention-deficit/hyperactivity disorder. Archives of Clinical Neuropsychology. 2002;17(6):531–46. [DOI]
24. Loge DV, Staton RD, Beatty WW. Performance of children with ADHD on tests sensitive to frontal lobe dysfunction. J Am Acad Child Adolesc Psychiatry. 1990;29(4):540–5. [DOI]
25. Risser MG, Bowers TG. Cognitive and neuropsychological characteristics of attention deficit hyperactivity disorder children receiving stimulant medications. Percept Mot Skills. 1993;77(3 Pt 1):1023–31. [DOI]
26. Shen I-H, Lee T-Y, Chen C-L. Handwriting performance and underlying factors in children with Attention Deficit Hyperactivity Disorder. Res Dev Disabil. 2012;33(4):1301–9. [DOI]
27. Geurts HM, Verté S, Oosterlaan J, Roeyers H, Sergeant JA. ADHD subtypes: do they differ in their executive functioning profile? Arch Clin Neuropsychol. 2005;20(4):457–77. [DOI]
28. Ahmetoglu E, Aral N, Butun Ayhan A. A comparative study on the visual perceptions of children with attention deficit hyperactivity disorder. Journal of Applied Sciences. 2008;8:830–5. [DOI]
29. Mariani MA, Barkley RA. Neuropsychological and academic functioning in preschool boys with attention deficit hyperactivity disorder. Developmental Neuropsychology. 1997;13(1):111–29. [DOI]
30. Semrud-Clikeman M, Walkowiak J, Wilkinson A, Christopher G. Neuropsychological differences among children with Asperger syndrome, nonverbal learning disabilities, attention deficit disorder, and controls. Dev Neuropsychol. 2010;35(5):582–600. [DOI]
31. Pitcher TM. Motor performance and motor control in children with subtypes of attention deficit hyperactivity disorder [Ph.D. dissertation]. [Perth, Australia]: Curtin University of Technology; 2001, pp:67–72.
32. Kibby MY, Dyer SM, Vadnais SA, Jagger AC, Casher GA, Stacy M. Visual processing in reading disorders and attention-deficit/hyperactivity disorder and its contribution to basic reading ability. Front Psychol. 2015;6:1635. [DOI]
33. Cohen NJ, Weiss G, Minde K. Cognitive styles in adolescents previously diagnosed as hyperactive. J Child Psychol Psychiatry. 1972;13(3):203–9. [DOI]
34. Verdine BN, Golinkoff RM, Hirsh-Pasek K, Newcombe NS. I. Spatial skills, their development, and their links to mathematics. Monogr Soc Res Child Dev. 2017;82(1):7–30. [DOI]
35. Chabernaud C, Mennes M, Kelly C, Nooner K, Di Martino A, Castellanos FX, et al. Dimensional brain-behavior relationships in children with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2012;71(5):434–42. [DOI]
36. Chan YH. Randomised controlled trials (RCTs)--sample size: the magic number? Singapore Med J. 2003;44(4):172–4.
37. Conners CK, Sitarenios G, Parker JD, Epstein JN. The revised Conners’ Parent Rating Scale (CPRS-R): factor structure, reliability, and criterion validity. J Abnorm Child Psychol. 1998 ;26(4):257–68. [DOI]
38. Khushabi K. determine the rate of prevalence of Attention Deficit Hyperactivity Disorder and comorbid disorder in elementary school aged in Tehran. Tehran: University of Social Welfare and Rehabilitation Science; 2002, pp: 63. [Persian]
39. Soluki S, Yazdani S, Arjmandnia A, Fathabadi J, Hassanzadeh S, Nejati V, Jansen P. Comprehensive assessment of spatial ability in children: a computerized tasks battery. Adv Cogn Psychol; 2020. [In Press].
40. Conners CK. Symptom patterns in hyperkinetic, neurotic, and normal children. Child development. 1970;41(3):667-82. [Article]
41. Gardner MF. TVPS, Test of Visual-Perceptual Skills (non-motor): manual. Hydesville, CA: Psychological and Educational Publications; 1996.
42. Dehghan A. Hanjaryabi azmoon mahart–haye edrak binaie gheyr vabaste be harekat dar koodakan 4–7 slae Tehran [Standardization of move independent tests of visual perceptual skills in 4–7 years old children of Tehran] [dissertation for M.Sc. in Occupational Therapy]. [Tehran, Iran]: University of Social Welfare and Rehabilitation; 2011, pp:117. [Persian]
43. Davis DW, Burns BM, Wilkerson SA, Steichen JJ. Visual perceptual skills in children born with very low birth weights. J Pediatr Health Care. 2005;19(6):363–8. [DOI]
44. Harris J, Newcombe NS, Hirsh‐Pasek K. A new twist on studying the development of dynamic spatial transformations: Mental paper folding in young children. Mind, Brain, and Education. 2013;7(1):49–55. [DOI]
45. Wiedenbauer G, Jansen-Osmann P. Manual training of mental rotation in children. Learning and Instruction. 2006;18(1):30–41. [DOI]
46. Hegarty M, Waller D. A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence. 2004;32(2):175–91. [DOI]
47. Sanchez CA, Wiley J. The role of dynamic spatial ability in geoscience text comprehension. Learning and Instruction. 2014;31:33–45. [DOI]
48. Mengue-Topio H, Courbois Y, Farran EK, Sockeel P. Route learning and shortcut performance in adults with intellectual disability: A study with virtual environments. Research in Developmental Disabilities. 2011;32(1):345–52. [DOI]
49. Ekstrom RB, French JW, Harman HH, Dermen D. Manual for kit of factor-referenced cognitive tests: 1976. Princeton N.J.: Education Testing Service; 1976.
50. McGee MG. Human spatial abilities: psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin. 1979;86(5):889–918.
51. Halpern DF. Sex differences in cognitive abilities. 3rd ed. Mahwah, N.J: L. Erlbaum Associates; 2000.
52. Bell S, Saucier D. Relationship among environmental pointing accuracy, mental rotation, sex, and hormones. Environment and Behavior. 2004;36(2):251–65. [DOI]
53. Hoogman M, Bralten J, Hibar DP, Mennes M, Zwiers MP, Schweren LSJ, et al. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry. 2017;4(4):310–9. [DOI]
54. Silk T, Vance A, Rinehart N, Egan G, O’Boyle M, Bradshaw JL, et al. Fronto-parietal activation in attention-deficit hyperactivity disorder, combined type: functional magnetic resonance imaging study. Br J Psychiatry. 2005;187:282–3. [DOI]
55. Gazzaniga MS, editor. The cognitive neurosciences. 4th ed. Cambridge, Mass: MIT Press; 2014, pp:405–14.
56. Hunt E, Pellegrino JW, Frick RW, Farr SA, Alderton D. The ability to reason about movement in the visual field. Intelligence. 1988;12(1):77–100. [DOI]
57. Elosúa MR, Del Olmo S, Contreras MJ. Differences in executive functioning in children with Attention Deficit and Hyperactivity Disorder (ADHD). Front Psychol. 2017;8:976. [DOI]
58. Marshalek B, Lohman DF, Snow RE. The complexity continuum in the radex and hierarchical models of intelligence. Intelligence. 1983;7(2):107–27. [DOI]
59. Alderson RM, Rapport MD, Sarver DE, Kofler MJ. ADHD and behavioral inhibition: a re-examination of the stop-signal task. J Abnorm Child Psychol. 2008;36(7):989–98. [DOI]
60. Rapport MD, Orban SA, Kofler MJ, Friedman LM. Do programs designed to train working memory, other executive functions, and attention benefit children with ADHD? A meta-analytic review of cognitive, academic, and behavioral outcomes. Clin Psychol Rev. 2013;33(8):1237–52. [DOI]
61. Samea F, Soluki S, Nejati V, Zarei M, Cortese S, Eickhoff SB, et al. Brain alterations in children/adolescents with ADHD revisited: A neuroimaging meta-analysis of 96 structural and functional studies. Neurosci Biobehav Rev. 2019;100:1–8. [DOI]
62. Faraone SV, Larsson H. Genetics of attention deficit hyperactivity disorder. Mol Psychiatry. 2019;24(4):562–75. [DOI]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.